Tags
Industry News

IEC publishes state of the art guidance for the avoidance of hazards due to static electricity.

The International Electrotechnical Commission has published a new Technical Specification called IEC 60079-32-1: “Explosive atmospheres - Part 32-1: Electrostatic hazards - Guidance”. This Technical Specification is a guidance document which is the latest addition to the IEC series of 60079 “Explosive Atmospheres” standards that are designed to limit fires and explosions caused by electrical malfunctions within hazardous locations.

The 168 page document is the first of two documents to be published by the IEC under the “60079-32” designation and is intended to aid the designers and users of process equipment minimise the risk of incendive electrostatic discharges within potentially explosive atmospheres. It covers a broad range of process scenarios that can lead to the generation of electrostatic charges, provides examples of what measures can be taken to reduce charge generation and accumulation and outlines how process equipment should be grounded and bonded.

The second part, IEC 60079-32-2, is entitled “Electrostatics hazards – Tests” and outlines test methods to determine factors like surface resistance, earth leakage resistance, powder resistivity, liquid conductivity, capacitance and the incendivity of electrostatic discharges.

The stated objective of IEC 60079-32-1 is to provide:

“the best available accepted state of the art guidance for the avoidance of hazards due to static electricity”.

To date guidance documents that address the ignition hazards of static electricity have either been published by national institutions like the NFPA or pan-European organisations like CENELEC. IEC 60079-32-1 has been collectively developed by a large number of technical committees from IEC member countries, making this document a truly global collaboration. It also builds on the work of national and regional guidance documents addressing electrostatic hazards, including CENELEC/TR: 50404, NFPA 77, BS 5958, TRBS 2153:2009 and JNIOSH TR42.

Although the Technical Specification can be purchased from the IEC’s webstore, it will be the responsibility of national standards institutes like the ANSI in the U.S., BSI in the U.K. and DIN in Germany to administer the circulation of the document in their respective national territories. It is anticipated that European institutions will withdraw CENELEC/TR: 50404 and have it superseded by IEC 60079-32-1. The ANSI has the document available for purchase from its website.

Overview of the Technical Specification:

The Technical Specification is sub-divided into what are termed “clauses” that highlight the electrostatic hazards associated with various categories of materials, the hazards associated with people, including physiological shocks, and what grounding and bonding measures should be put in to practice. The clauses are presented as:

1) The handling of solids.

2) The storage and handling of liquids.

3) The handling of gases and vapours.

4) The storage and handling of powders.

5) The storage and handling of explosives.

6) Electrostatic problems caused by people.

7) Avoidance of electrostatic shock.

8) Earthing and bonding of plant and machinery.

There are also several Annexes that provide informative material, examples of which include a description of the various types of electrostatic discharges, the types of electrostatic discharges that can be expected from processes carried out within potentially flammable and combustible atmospheres and the provision of an illustrated flowchart for assessing electrostatic hazards.

Owing to the fact that the document is 168 pages long, it would be impossible to provide a comprehensive overview of the guidance contained in the document in just a few pages. However, it would be worth touching on guidance related to the grounding and bonding of specific processes that utilise portable equipment at risk of static charge accumulation.

The design and monitoring of grounding systems:

This section addresses the design and monitoring of systems dedicated to grounding permanent and portable plant equipment. Permanently installed plant equipment like reactors and pumps will most likely be grounded via the electrical grounding system for the plant. Electrical fault paths (and lightning protection paths) are more than adequate to dissipate electrostatic charge to ground.

For portable conductive equipment this section recommends that temporary connections using bolts or “pressure-type” clamps are capable of penetrating protective coatings, rust or product deposits that are typically present on the surface of such equipment, e.g. metal drums. It states that pressure-type clamps should be capable of establishing a connection resistance of less than 10 Ohms to the base metal of the conductive equipment.

Systems designed to monitor the resistance between equipment at risk of charge accumulation and earth (designated grounding points) should not only be capable of monitoring the resistance in the grounding circuit, but should also be capable of drawing attention to any changes in resistance. This is to ensure that malfunctions in the grounding circuit are detected as early as possible so that inspections and necessary repairs are made in good time.

Given that metal grounding circuits should not display a resistance above 10 ohms (section 13.4.1) it would be prudent to specify grounding systems that are capable of identifying changes in resistance and alerting personnel as soon as 10 ohms in the ground path is exceeded.

Type C FIBC:

This section describes which hazardous zones the four bag types (A,B,C,D) are suitable for use in. The “zones” are based on the IEC method of hazardous location zoning classification described in U.S. NEC articles 505 & 506 and the Canadian CEC and have been fully adopted in ATEX legislated countries. It also specifies the types of liners (L1, L2, L3) and FIBC bag type combinations that may or may not be used in hazardous locations. This section heavily references IEC 61340-4-4: “Electrostatics – Part 4-4: Standard test methods for specific applications – Electrostatic classification of flexible intermediate bulk containers (FIBC)” which specifies the construction, testing and labelling criteria for Type A,B,C,D FIBC bags.

Under the requirements of this standard Type C bags must be grounded and for those manufacturing or using Type C bags the resistance from any part of the bag to a groundable point on the bag shall be less than 10 Meg-ohm. This means that the conductive fabric or filaments that make up the grounding path for electrostatic charges should not have a resistance of more than 10 Meg-ohm to the bag’s grounding point. This is a change from CLC/TR: 50404 which recommended a maximum resistance of 100 Meg-ohm.

The safest method of grounding Type C bags is to ensure the resistance through the bag is less than the benchmark value set by the standard(s) the site wishes to comply with. If a grounding system is to be specified, it is important to ensure the system tests the full range of permitted resistance. The specified resistance range for an IEC 61340-4-4 compliant bag will be any value under 10 Meg-ohm.

This section states that if Type D bags are used they do not need to be grounded, but conductive objects within the vicinity of the bag must be grounded.

Tanker trucks:

The precautionary guidance regarding the grounding of tanker trucks reflects the stated goal of the Technical Specification providing the latest state of the art guidance. Clause 7.3.2.2.3, part C, states that the “earth cable” grounding the tanker truck should be part of a static grounding system that continuously monitors the resistance between the truck and the designated grounding point located on the loading rack. It states that the grounding system should be interlocked with the transfer system to shut down the product transfer operation if this resistance exceeds 10 ohms.

It also states that the grounding system should be capable of recognising when it is not connected to the chassis/tank of the road tanker. This ensures that situations where the tank of the road tanker is not connected to the grounding system, for example, where an operator could connect the clamp to an isolated metal mud-guard or wheel-nut, will not result in a permissive condition for the transfer operation, thereby eliminating the risk of electrostatic charging of the tank truck.

Vacuum trucks:

The precautionary measures for the grounding of vacuum trucks state that the truck should be connected to a “designated” site earth (grounding point) before proceeding with the transfer operation. A “designated” site earth is a grounding point that has been verified as having a low resistance connection to “true earth” by suitably qualified engineers. These points are usually identified by tags or labels.

The guidance states that wherever a designated grounding point is not provided and portable ground rounds are permitted for use, or there is doubt regarding the quality of the site designated grounding point, the integrity of that grounding point should be verified prior to the transfer operation. This means that there should be a way of ensuring that the grounding point is actually connected to true earth in order to ensure the charges generated by the transfer operation do not accumulate on the truck or the hoses connected to the truck. This can be achieved via a truck mounted ground verification system or by engineers with ground testing meters. The resistance between the verified grounding point and the vacuum truck should not exceed 10 ohms and it is recommended that this resistance is verified by a truck mounted grounding system which will automatically indicate this to the driver or be verified with an ohmmeter (which should be used by a suitably competent electrical person).

This section also states that hoses used in the vacuuming operation should be compliant with the section covering hoses and hose assemblies. Table 18 in section 7.7.3.4 “Properties and usage of ISO 8031 hose assembly grades”, describes the types of hoses that can be used for materials with varying electrical properties.

If non-metallic connections are used to ground the truck up to 1 Meg ohm resistance between the truck and the grounding point is permitted. It should be advised that if a 1 Meg ohm limit is being adopted that the grounding point to which the truck is connected has a verified low connection resistance to true earth, of not more than a few ohms. If a 1 Meg ohm limit is adopted for powder transfers it would be advisable to estimate the charging current generated by the vacuuming operation as very high charging rates are common place with truck vacuumed non-conductive powders.

Personnel grounding, flooring and footwear:

Clause 11 provides guidance on minimising the risk of static electricity accumulating on people and describes various scenarios that can generate electrostatic charges on people. It also describes what methods can be adopted to dissipate charge off people, ranging from guidance on flooring, footwear and additional accessories that can be used to ground personnel working in hazardous locations.

Conclusion:

Technical Specification IEC 60079-32-1 is probably the most comprehensive guidance produced on avoiding the hazards of static electricity to date and with the content being developed and approved by a wide cohort of IEC national technical committees, represents a cohesive global approach to controlling electrostatic hazards in the workplace. This article provides a limited overview of the guidance contained in the document. More information regarding the material, processes and equipment that can be susceptible electrostatic discharges, how charging can be minimised and what additional grounding and bonding practices can be put into action are described throughout the different clauses. Copies should be available for purchase from national standards bodies from October 2013. IEC 60079-32-2 is scheduled for release in 2014.

Company Info

Latest News

Tags
Pipelines
Software & IT

Schneider Electric shares improvements to pipeline management software

Schneider Electric Software recently hosted its midstream industry user conference, Innovation Summit: Digital Pipelines 2017. The event focused on innovation and excellence in pipeline operations in the areas of safety, efficiency and connectivity. At this event, Schneider Electric Software made a number of significant product release announcements that deliver enhanced functionality and usability to users of Schneider Electric's pipeline management software. 

Read More

Tags
Occupational Health & Safety

Cut-resistant gloves for hazardous working environments

Honeywell offers a new line of lightweight, cut-resistant gloves that allow industrial workers to perform delicate tactile work while providing heavy-duty protection against lacerations. Honeywell Perfect Fit A6 glove gives workers excellent tactile sensitivity and dexterity for performing precise manual tasks, such as small parts assembly, while also preventing cuts and lacerations.

Read More

Sponsored Content

TESTS SHOW VOLVO AT 20 PERCENT LOWER COST PER TON

The Volvo EC350E and EC380E were put up against two industry leaders to see how each would perform in terms of productivity and fuel efficiency. The four comparable machines were equipped with fuel meters and put through the same test, loading trucks at maximum power. The results were used to calculate estimated time and cost to move 551,156 U.S. tons (500,000 metric tons) of material. Calculations are based on 50-minute work hours, 8 hours per day.

The Result: Volvo delivered a 20% lower cost per ton and moved 15% more material per hour. 

Learn More

Tags
Pipelines
Instrumentation, Systems & Automation

Turbine flow meter an easy drop-in replacement for many existing units

AW-LAKE COMPANY has introduced the TW Series Turbine Flow Meter for the most rigorous flow measurement applications. Ideal for use both on and off the oil field, the TW Series Turbine Flow Meter provides highly accurate (to ±1% of reading or better) and repeatable (0.1% repeatability) flow measurement of oils, water and some chemicals with a low cost of ownership.

Read More

Tags
Industry News

Quebec releases draft of proposed oil and gas regulations

Quebec's Ministry of Energy and Natural Resources has published its proposed regulations to govern oil and gas activities within the province. The draft regulations are required for the implementation of the Petroleum Resources Act, which was enacted as a result of the adoption of Bill 106, An Act to Implement the 2030 Energy Policy and to Amend Various Legislative Provisions in December 2016.

Read More

Tags
Industry News

Hangingstone officially opens with ribbon cutting ceremony

Premier Rachel Notley cuts the ribbon to mark the official opening of the Japan Canada Oil Sands Ltd. (JACOS) Hangingstone project near Fort McMurray.

Alberta Premier Rachel Notley, representatives from Japan and local officials have marked the opening of the Japan Canada Oil Sands Ltd. (JACOS) Hangingstone project near Fort McMurray.

Read More

Tags
Software & IT
Instrumentation, Systems & Automation

Improving control room management reduces stress and improves operations for pipelines

The control room is the brain of pipeline operations; it serves as the command center for decisions both inside and out in the field. The brain thinks clearly and strategically when it is used to its full potential; when overwhelmed with information, it causes stress and lack of direction. The same is true for pipeline control rooms and operators. 

Read More

Tags
Instrumentation, Systems & Automation
Software & IT

Internet of Things requires solutions for connectivity concerns to succeed

Energy companies will struggle to derive the maximum value from the Internet of Things (IoT) without access to radically improved, reliable, high-speed connectivity. This is according to independent research commissioned by Inmarsat, which found that while the overwhelming majority of energy companies are in the process of deploying or developing IoT solutions, low rates of connectivity are preventing them from realizing the full benefits that IoT can deliver. 

Read More

Tags
Environmental
Industry News

Cenovus on Dow Jones Sustainability index for eighth year

Cenovus Energy Inc. has been recognized once again for its corporate responsibility performance. The company has been included in the Dow Jones Sustainability North America Index for the eighth consecutive year. Cenovus is one of only two Canadian oil and gas producers to make the index this year. Areas where the company scored well include stakeholder engagement, environmental reporting, water management, social reporting, risk and crisis management, biodiversity, corporate citizenship and philanthropy, climate strategy and corporate governance.

Read More